Decision Support: Nieuws.be
Operating System Windows 2008 Enterprise RTM (64-bit)
Software SQL Server 2005 Enterprise x64 SP3 (64-bit)
Benchmark software vApus + real world "Nieuws.be" Database
Database Size > 100 GB
Typical error margin 1-2%

The Flemish/Dutch Nieuws.be site is one of the newest web 2.0 websites, launched in 2008. It gathers news from many different sources and allows readers to personalize their view of all this news. The Nieuws.be site sits on top of a large database - more than 100GB and growing. This database consists of a few hundred separate tables, which have been carefully optimized by our lab (the Sizing Servers Lab).

Nieuws.be allowed us to test the MS SQL 2005 database for CPU benchmarking. We used a log taken between 10:00 and 11:00, when traffic is at its peak. vApus, the stress testing software developed by the Sizing Servers Lab, analyzes this log and simulates real users by performing the actions they performed on the website. In this case, we used the resulting load on the database for our test. 99% of the load on the database consists of selects, and about 5% of them are stored procedures. Network traffic is 6.5MB/s average and 14MB/s peak, so our Gigabit connection still has a lot of headroom. DQL (Disk Queue Length) is at 2 in the first round of tests, but we only report the results of the subsequent rounds where the database is in a steady state. We measured a DQL close to 0 during these tests, so there is no tangible impact from the hard disks. This test is as real world as it gets! All servers were tested in a dual CPU configuration.

Nieuws.be MS SQL Server 2005

Seven times faster than a 3-year old CPU and 76% faster than an adversary that used to outperform almost every Intel CPU! Nehalem is like a CPU that used a time machine and teleported to 2009 from 2011. To put this kind of performance into perspective: it would take a 4.7GHz Opteron to keep up with Nehalem at 3.03GHz (that's the average clock speed as Turbo mode was enabled).

OLTP - Oracle "Calling Circle" Website - MCS eFMS
Comments Locked

44 Comments

View All Comments

  • snakeoil - Monday, March 30, 2009 - link

    oops it seems that hypertreading is not scaling very well too bad for intel
  • eva2000 - Tuesday, March 31, 2009 - link

    Bloody awesome results for the new 55xx series. Can't wait to see some of the larger vBulletin forums online benefiting from these monsters :)
  • ssj4Gogeta - Monday, March 30, 2009 - link

    huh?
  • ltcommanderdata - Monday, March 30, 2009 - link

    I was wondering if you got any feeling whether Hyperthreading scaled better on Nehalem than Netburst? And if so, do you think this is due to improvements made to HT itself in Nehalem, just do to Nehalem 4+1 instruction decoders and more execution units or because software is better optimized for multithreading/hyperthreading now? Maybe I'm thinking mostly desktop, but HT had kind of a hit or miss reputation in Netburst, and it'd be interesting to see if it just came before it's time.
  • TA152H - Monday, March 30, 2009 - link

    Well, for one, the Nehalem is wider than the Pentium 4, so that's a big issue there. On the negative side (with respect to HT increase, but really a positive) you have better scheduling with Nehalem, in particular, memory disambiguation. The weaker the scheduler, the better the performance increase from HT, in general.

    I'd say it's both. Clearly, the width of Nehalem would help a lot more than the minor tweaks. Also, you have better memory bandwidth, and in particular, a large L1 cache. I have to believe it was fairly difficult for the Pentium 4 to keep feeding two threads with such a small L1 cache, and then you have the additional L2 latency vis-a-vis the Nehalem.

    So, clearly the Nehalem is much better designed for it, and I think it's equally clear software has adjusted to the reality of more computers having multiple processors.

    On top of this, these are server applications they are running, not mainstream desktop apps, which might show a different profile with regards to Hyper-threading improvements.

    It would have to be a combination.
  • JohanAnandtech - Monday, March 30, 2009 - link

    The L1-cache and the way that the Pentium 4 decoded was an important (maybe even the most important) factor in the mediocre SMT performance. Whenever the trace cache missed (and it was quite small, something of the equivalent of 16 KB), the Pentium 4 had only one real decoder. This means that you have to feed two threads with one decoder. In other words, whenever you get a miss in the trace cache, HT did more bad than good in the Pentium 4. That is clearly is not the case in Nehalem with excellent decoding capabilities and larger L1.

    And I fully agree with your comments, although I don't think mem disambiguation has a huge impact on the "usefullness" of SMT. After all, there are lots of reasons why the ample execution resources are not fully used: branches, L2-cache misses etc.
  • IntelUser2000 - Tuesday, March 31, 2009 - link

    Not only that, Pentium 4 had the Replay feature to try to make up for having such a long pipeline stage architecture. When Replay went wrong, it would use resources that would be hindering the 2nd thread.

    Core uarch has no such weaknesses.
  • SilentSin - Monday, March 30, 2009 - link

    Wow...that's just ridiculous how much improvement was made, gg Intel. Can't wait to see how the 8-core EX's do, if this launch is any indication that will change the server landscape overnight.

    However, one thing I would like to see compared, or slightly modified, is the power consumption figures. Instead of an average amount of power used at idle or load, how about a total consumption figure over the length of a fixed benchmark (ie- how much power was used while running SPECint). I think that would be a good metric to illustrate very plainly how much power is saved from the greater performance with a given load. I saw the chart in the power/performance improvement on the Bottom Line page but it's not quite as digestible as or as easy to compare as a straight kW per benchmark figure would be. Perhaps give it the same time range as the slowest competing part completes the benchmark in. This would give you the ability to make a conclusion like "In the same amount of time the Opteron 8384 used to complete this benchmark, the 5570 used x watts less, and spent x seconds in idle". Since servers are rarely at 100% load at all times it would be nice to see how much faster it is and how much power it is using once it does get something to chew on.

    Anyway, as usual that was an extremely well done write up, covered mostly everything I wanted to see.
  • 7Enigma - Wednesday, April 1, 2009 - link

    I think that is a very good method for determining total power consumption. Obviously this doesn't show cpu power consumption, but more importantly the overall consumption for a given unit of work.

    Nice thinking.
  • JohanAnandtech - Wednesday, April 1, 2009 - link

    I am trying to hard, but I do not see the difference with our power numbers. This is the average power consumption of one CPU during 10 minutes of DVD-store OLTP activity. As readers have the performance numbers, you can perfectly calculate performance/watt or per KWh. Per server would be even better (instead of per CPU) but our servers were too different.

    Or am I missing something?

Log in

Don't have an account? Sign up now